0 Daumen
57 Aufrufe

Hallo zusammen habe Porbleme bei filgender Aufgabe.


Eine verdünnte Lösung einer Säure mit pka= 5,100 wird zu einem Puffer mit ph=6,400 und ausrechender Pufferkapazität gegeben. Berechnen Sie den Anteil der deprotonierten Form der Säure in Bezug zu ihrer Gesamtmenge in (%):


Ich hab da folgenden Ansatz: pka 5,100 d.h schwache Säure ph wert Formel für schwache Säuren benutzen

ph=1/2x(pks-log[HA0]) 

und ph puffer= 6,400 d.h [H3O+]= 10^-6,400

da wir eine schwache Säure haben gilt [HA]=[HA0]

und [A-]=[H3O+]

wir sollen ja den Anteil berechnen ich denke damit ist der dissoziationsgrad gemeint also [A-]/[HA0]

das ist ja gleich [H30]/[HA]


dann in ph formel einsetzen: 6,400= 1/2x (5,100-log[HA])

7,7=-log[HA]

daraus folgt [HA]=10^-7,7


einsetzen in Dissoziationsgrad:

[H3O+]/[HA]= 10^-6,400/10^-7,70= 19,95


das ist aber falsch . Die Lösung ist 95,23%

ich weiss nicht was ich falsch gemacht habe hoffe ihr könnt mir da weiterhelfen

von

Kann jemand vielleicht bitte helfen?

Hat jemand einen Ansatz bitte

1 Antwort

0 Daumen

Hi, here chemweazle,

Tage voller Grübelei mit diesem Projekt ALPHA,

Die Pufferlösung bestimmt die Lage des Dissoziationsgleichgewichtes einer αzugegebenen schwachen Säure.

Also bei dieser Aufgabe, wo die schwache Säure HA mit einer Pufferlösung vermischt wurde, kann man den Dissoziationsgrad Alpha nicht durch den Bruchterm Hydroniumionenkonzentration geteilt durch die Einwaagekonzentration der Säure HA ausdrücken, also nicht [H(+)] / [HA]0. Sondern hier nur durch die Konzentration der konjugierten Base geteilt durch die Einwaagekonzentration der Säure, Alpha = [A(-)] / [HA]0 ausdrücken.


Der pH-Wert und somit die Hydroniumionenkonzentration bleibt auch nach der Zugabe der schwachen Säure zur Pufferlösung konstant.
Die Hydroniumionenkonzentration und somit der pH-Wert sind hier vom Puffer bestimmt, die Hydroniumionenkonzentration und somit der pH-Wert sind in diesem Fall nicht durch die Dissoziation der Säuer HA und Ihrer Stärke( Ks-Wert) bestimmt.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Anders ist es, wenn eine schwache Säure verdünnt in Wasser alleine ohne Puffer gelöst vorliegt und von der Einwaagekonzentration C0 x mole HA-Moleküle pro Volumen in x mol pro Volumen Hydroniumionen und in x mol pro Volumen konjugierte Base dissozieren.

HAÛH++A-
[HA]gl=C0 - xx mol/lx mol/l

Dann kann man sehr wohl den Dissoziationsgrad Alpha als Bruchterm , wie folgt ausdrücken:
$$\alpha = \frac{x}{C_{0}} = \frac{[H^{(+)}]}{C_{0}} = \frac{ [A^{(-)}]}{C_{0}}$$

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Nun zurück zur schwachen Säure im Gemisch mit der Pufferlösung
Beim Vermischen des Puffers mit der schwachen Säure bleibt der pH-Wet konstant, das soll er auch. Der Puffer erfüllt seinen Zweck. Nun wenn die H(+)-Ionenkonzentration konstant bleibt und als gegeben angesehen werden kann, dann ist auch die Lage des Dissoziationsgleichgewichtes der schwachen Säure HA festgelegt.
Bei gegebener Hydroniumionenkonzentration ist auch das Verhältnis der Gleichgewichtskonzentrationen von konjugierter Base zu konjugierter Säure gegeben bzw. festgelegt.
Das Konzentrationsverhältnis von konjugierter Base zu konjugierter Säure sei mit v abgekürzt.
$$\dfrac{Ks(HA)}{[H^{(+)}]} = \frac{[A^{(-)}]}{[HA]} = v$$

$$v= \frac{10^{-pks}\cdot mol\cdot l}{10^{-pH}\cdot mol\cdot l} = 10^{pH - pks}$$

v = 106,4-5,1 = 101,3 = 19,95262, gerundet auf 19,953

Es liegen fast 20mal so viel Anionen pro Volumen, als Moleküle der konjugierten Säure im Dissoziationsgleichgewicht vor.

Nanu, mehr konjugierte Base als konjugierte Säuer im Gleichgewicht?

Ja, denn die schwache Säure hat einen pks-Wert von 5,1 und der pH-Wert mit 6,4 liegt höher als der pks-Wert. Die Konzentration der konjugierten Base muß somit größer als [HA] sein.
$$v = \frac{[A^{(-)}]}{[HA]} = \dfrac{[A^{(-)}]}{[HA]^{0}] - [A^{(-)}]} $$

Man hätte auch alternativ das Kalium- oder Natriumsalz (NaA oder KA) der schwachen Säure(HA) mit der Säure im Verhältnis von v = 19,953 vermischen können und mit Wasser auf ein gewüschtes Volumen verdünnen können, dann hätte man auch einen Puffer mit dem pH-Wert von 6,4 hergestellt.


Berechnung von Alpha, den Dissoziationsgrad
Es fehlt die Angabe der Einwaagekonzentration der Säure HA. Also [HA}0 fehlt für die Berechnung von Alpha.

Aber man kann das Verhältnis v auch durch den Term von Alpha ausdrücken.
$$[A^{(-)}] =  \alpha\cdot [HA]^{0}]$$

$$v = \dfrac{[A^{(-)}]}{[HA]^{0}] - [A^{(-)}]} = \dfrac{\alpha\cdot [HA]^{0}}{[HA]^{0} -\alpha\cdot [HA]^{0}}$$

$$v = \dfrac{[HA]^{0}]\cdot \alpha}{[HA]^{0}]\cdot (1 -\alpha)}$$

$$v = \frac{\alpha}{(1 - \alpha)}$$

v - v*α = α, daraus folgt: v = α + v*α = α * (1 + v)

$$\alpha = \frac{v}{1 + v} = \frac{19,953}{1 + 19,953} = \frac{19,953}{20,953} = 0,95227 \approx 0,9523$$

entsprechend 95,23 %

von

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

1 Antwort
1 Antwort
1 Antwort

Willkommen bei der Chemielounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community